3.131 \(\int \frac{1}{(a+a \sec (c+d x))^2 \sqrt{e \sin (c+d x)}} \, dx\)

Optimal. Leaf size=190 \[ \frac{20 \sqrt{\sin (c+d x)} \text{EllipticF}\left (\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right ),2\right )}{21 a^2 d \sqrt{e \sin (c+d x)}}+\frac{4 e^3}{7 a^2 d (e \sin (c+d x))^{7/2}}-\frac{2 e^3 \cos ^3(c+d x)}{7 a^2 d (e \sin (c+d x))^{7/2}}-\frac{2 e^3 \cos (c+d x)}{7 a^2 d (e \sin (c+d x))^{7/2}}-\frac{4 e}{3 a^2 d (e \sin (c+d x))^{3/2}}+\frac{16 e \cos (c+d x)}{21 a^2 d (e \sin (c+d x))^{3/2}} \]

[Out]

(4*e^3)/(7*a^2*d*(e*Sin[c + d*x])^(7/2)) - (2*e^3*Cos[c + d*x])/(7*a^2*d*(e*Sin[c + d*x])^(7/2)) - (2*e^3*Cos[
c + d*x]^3)/(7*a^2*d*(e*Sin[c + d*x])^(7/2)) - (4*e)/(3*a^2*d*(e*Sin[c + d*x])^(3/2)) + (16*e*Cos[c + d*x])/(2
1*a^2*d*(e*Sin[c + d*x])^(3/2)) + (20*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(21*a^2*d*Sqrt[e*Si
n[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.590883, antiderivative size = 190, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 9, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.36, Rules used = {3872, 2875, 2873, 2567, 2636, 2642, 2641, 2564, 14} \[ \frac{4 e^3}{7 a^2 d (e \sin (c+d x))^{7/2}}-\frac{2 e^3 \cos ^3(c+d x)}{7 a^2 d (e \sin (c+d x))^{7/2}}-\frac{2 e^3 \cos (c+d x)}{7 a^2 d (e \sin (c+d x))^{7/2}}-\frac{4 e}{3 a^2 d (e \sin (c+d x))^{3/2}}+\frac{16 e \cos (c+d x)}{21 a^2 d (e \sin (c+d x))^{3/2}}+\frac{20 \sqrt{\sin (c+d x)} F\left (\left .\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )\right |2\right )}{21 a^2 d \sqrt{e \sin (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Sec[c + d*x])^2*Sqrt[e*Sin[c + d*x]]),x]

[Out]

(4*e^3)/(7*a^2*d*(e*Sin[c + d*x])^(7/2)) - (2*e^3*Cos[c + d*x])/(7*a^2*d*(e*Sin[c + d*x])^(7/2)) - (2*e^3*Cos[
c + d*x]^3)/(7*a^2*d*(e*Sin[c + d*x])^(7/2)) - (4*e)/(3*a^2*d*(e*Sin[c + d*x])^(3/2)) + (16*e*Cos[c + d*x])/(2
1*a^2*d*(e*Sin[c + d*x])^(3/2)) + (20*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(21*a^2*d*Sqrt[e*Si
n[c + d*x]])

Rule 3872

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[((g*C
os[e + f*x])^p*(b + a*Sin[e + f*x])^m)/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 2875

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Dist[(a/g)^(2*m), Int[((g*Cos[e + f*x])^(2*m + p)*(d*Sin[e + f*x])^n)/(a - b*Sin[e +
 f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0]

Rule 2873

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2567

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(a*Cos[e +
 f*x])^(m - 1)*(b*Sin[e + f*x])^(n + 1))/(b*f*(n + 1)), x] + Dist[(a^2*(m - 1))/(b^2*(n + 1)), Int[(a*Cos[e +
f*x])^(m - 2)*(b*Sin[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (Intege
rsQ[2*m, 2*n] || EqQ[m + n, 0])

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin{align*} \int \frac{1}{(a+a \sec (c+d x))^2 \sqrt{e \sin (c+d x)}} \, dx &=\int \frac{\cos ^2(c+d x)}{(-a-a \cos (c+d x))^2 \sqrt{e \sin (c+d x)}} \, dx\\ &=\frac{e^4 \int \frac{\cos ^2(c+d x) (-a+a \cos (c+d x))^2}{(e \sin (c+d x))^{9/2}} \, dx}{a^4}\\ &=\frac{e^4 \int \left (\frac{a^2 \cos ^2(c+d x)}{(e \sin (c+d x))^{9/2}}-\frac{2 a^2 \cos ^3(c+d x)}{(e \sin (c+d x))^{9/2}}+\frac{a^2 \cos ^4(c+d x)}{(e \sin (c+d x))^{9/2}}\right ) \, dx}{a^4}\\ &=\frac{e^4 \int \frac{\cos ^2(c+d x)}{(e \sin (c+d x))^{9/2}} \, dx}{a^2}+\frac{e^4 \int \frac{\cos ^4(c+d x)}{(e \sin (c+d x))^{9/2}} \, dx}{a^2}-\frac{\left (2 e^4\right ) \int \frac{\cos ^3(c+d x)}{(e \sin (c+d x))^{9/2}} \, dx}{a^2}\\ &=-\frac{2 e^3 \cos (c+d x)}{7 a^2 d (e \sin (c+d x))^{7/2}}-\frac{2 e^3 \cos ^3(c+d x)}{7 a^2 d (e \sin (c+d x))^{7/2}}-\frac{\left (2 e^2\right ) \int \frac{1}{(e \sin (c+d x))^{5/2}} \, dx}{7 a^2}-\frac{\left (6 e^2\right ) \int \frac{\cos ^2(c+d x)}{(e \sin (c+d x))^{5/2}} \, dx}{7 a^2}-\frac{\left (2 e^3\right ) \operatorname{Subst}\left (\int \frac{1-\frac{x^2}{e^2}}{x^{9/2}} \, dx,x,e \sin (c+d x)\right )}{a^2 d}\\ &=-\frac{2 e^3 \cos (c+d x)}{7 a^2 d (e \sin (c+d x))^{7/2}}-\frac{2 e^3 \cos ^3(c+d x)}{7 a^2 d (e \sin (c+d x))^{7/2}}+\frac{16 e \cos (c+d x)}{21 a^2 d (e \sin (c+d x))^{3/2}}-\frac{2 \int \frac{1}{\sqrt{e \sin (c+d x)}} \, dx}{21 a^2}+\frac{4 \int \frac{1}{\sqrt{e \sin (c+d x)}} \, dx}{7 a^2}-\frac{\left (2 e^3\right ) \operatorname{Subst}\left (\int \left (\frac{1}{x^{9/2}}-\frac{1}{e^2 x^{5/2}}\right ) \, dx,x,e \sin (c+d x)\right )}{a^2 d}\\ &=\frac{4 e^3}{7 a^2 d (e \sin (c+d x))^{7/2}}-\frac{2 e^3 \cos (c+d x)}{7 a^2 d (e \sin (c+d x))^{7/2}}-\frac{2 e^3 \cos ^3(c+d x)}{7 a^2 d (e \sin (c+d x))^{7/2}}-\frac{4 e}{3 a^2 d (e \sin (c+d x))^{3/2}}+\frac{16 e \cos (c+d x)}{21 a^2 d (e \sin (c+d x))^{3/2}}-\frac{\left (2 \sqrt{\sin (c+d x)}\right ) \int \frac{1}{\sqrt{\sin (c+d x)}} \, dx}{21 a^2 \sqrt{e \sin (c+d x)}}+\frac{\left (4 \sqrt{\sin (c+d x)}\right ) \int \frac{1}{\sqrt{\sin (c+d x)}} \, dx}{7 a^2 \sqrt{e \sin (c+d x)}}\\ &=\frac{4 e^3}{7 a^2 d (e \sin (c+d x))^{7/2}}-\frac{2 e^3 \cos (c+d x)}{7 a^2 d (e \sin (c+d x))^{7/2}}-\frac{2 e^3 \cos ^3(c+d x)}{7 a^2 d (e \sin (c+d x))^{7/2}}-\frac{4 e}{3 a^2 d (e \sin (c+d x))^{3/2}}+\frac{16 e \cos (c+d x)}{21 a^2 d (e \sin (c+d x))^{3/2}}+\frac{20 F\left (\left .\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )\right |2\right ) \sqrt{\sin (c+d x)}}{21 a^2 d \sqrt{e \sin (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.37354, size = 82, normalized size = 0.43 \[ -\frac{\csc ^3(c+d x) \left (40 \sin ^{\frac{7}{2}}(c+d x) \text{EllipticF}\left (\frac{1}{4} (-2 c-2 d x+\pi ),2\right )+16 \sin ^4\left (\frac{1}{2} (c+d x)\right ) (11 \cos (c+d x)+8)\right )}{42 a^2 d \sqrt{e \sin (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + a*Sec[c + d*x])^2*Sqrt[e*Sin[c + d*x]]),x]

[Out]

-(Csc[c + d*x]^3*(16*(8 + 11*Cos[c + d*x])*Sin[(c + d*x)/2]^4 + 40*EllipticF[(-2*c + Pi - 2*d*x)/4, 2]*Sin[c +
 d*x]^(7/2)))/(42*a^2*d*Sqrt[e*Sin[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 1.707, size = 148, normalized size = 0.8 \begin{align*}{\frac{1}{d} \left ({\frac{4\,{e}^{3} \left ( 7\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-4 \right ) }{21\,{a}^{2}} \left ( e\sin \left ( dx+c \right ) \right ) ^{-{\frac{7}{2}}}}-{\frac{2}{21\,{a}^{2} \left ( \sin \left ( dx+c \right ) \right ) ^{4}\cos \left ( dx+c \right ) } \left ( 5\,\sqrt{-\sin \left ( dx+c \right ) +1}\sqrt{2+2\,\sin \left ( dx+c \right ) } \left ( \sin \left ( dx+c \right ) \right ) ^{9/2}{\it EllipticF} \left ( \sqrt{-\sin \left ( dx+c \right ) +1},1/2\,\sqrt{2} \right ) +11\, \left ( \sin \left ( dx+c \right ) \right ) ^{5}-17\, \left ( \sin \left ( dx+c \right ) \right ) ^{3}+6\,\sin \left ( dx+c \right ) \right ){\frac{1}{\sqrt{e\sin \left ( dx+c \right ) }}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sec(d*x+c))^2/(e*sin(d*x+c))^(1/2),x)

[Out]

(4/21/a^2*e^3/(e*sin(d*x+c))^(7/2)*(7*cos(d*x+c)^2-4)-2/21*(5*(-sin(d*x+c)+1)^(1/2)*(2+2*sin(d*x+c))^(1/2)*sin
(d*x+c)^(9/2)*EllipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))+11*sin(d*x+c)^5-17*sin(d*x+c)^3+6*sin(d*x+c))/a^2/s
in(d*x+c)^4/cos(d*x+c)/(e*sin(d*x+c))^(1/2))/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^2/(e*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{e \sin \left (d x + c\right )}}{{\left (a^{2} e \sec \left (d x + c\right )^{2} + 2 \, a^{2} e \sec \left (d x + c\right ) + a^{2} e\right )} \sin \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^2/(e*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(e*sin(d*x + c))/((a^2*e*sec(d*x + c)^2 + 2*a^2*e*sec(d*x + c) + a^2*e)*sin(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))**2/(e*sin(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt{e \sin \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^2/(e*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/((a*sec(d*x + c) + a)^2*sqrt(e*sin(d*x + c))), x)